Authors
AN Vetlugin, IV Sokolov
Publication date
2013/12
Journal
Optics and Spectroscopy
Volume
115
Pages
875-883
Publisher
Springer US
Description
We present a new scheme of quantum memory for optical images (spatially multimode light fields) that allows mapping the quantum state of the signal onto the long-lived coherence of the ground state of an ensemble of stationary atoms or impurity centers. The memory medium is embedded in an optical cavity with degenerate transverse modes, which increases the effective optical thickness of the medium and allows one, in principle, to store information in optically thin atomic layers. Since, in reality, storage and retrieval of limited-duration signals, including signals shorter than the lifetime of the field in the cavity, is of interest, we do not use the low-Q cavity approximation. The influence of losses due to partial reflection of the nonstationary signal field incident on a coupling mirror on the storage efficiency is considered. We used the method of approximate impedance matching, wherein losses due to …
Total citations
201420152016121